

12th Annual Meeting & Indoor Air Expo February 24-26, 2009 • Fort Worth, TX

Omni Fort Worth & Fort Worth Convention Center

Indoor Allergens

Health Effects, Exposure Assessment and Intervention

Martin D. Chapman, PhD Eva M. King, PhD INDOOR Biotechnologies Inc., Charlottesville VA

The IAQ Industry's Largest Annual Convention

Indoor Allergens:

Risk Factors and Health Effects

Martin D. Chapman, PhD President/CEO INDOOR Biotechnologies Inc., Charlottesville VA

12th Annual Meeting & Indoor Air Expo Omni Fort Worth & Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

Asthma: A Public Health Problem

Indoor Air Quality ASSOCIATION

12th Annual Meeting & Indoor Air Expo Omni Fort Worth & Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

Air

Asthma: A Public Health Problem

Asthma Mortality Rates in the US

Risk Factors for Asthma

- Family history of asthma or allergy
- Allergen exposures
- Viral infections
- Obesity
- Tobacco smoke
- Air pollution

12th Annual Meeting & Indoor Air Expo Omni Fort Worth & Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

Association between Indoor Allergens and Asthma

- IgE-mediated sensitization to indoor allergens is a major risk factor for asthma:
 - Case control studies (e.g. in Emergency Rooms and schools)
 - Prospective studies in high risk cohorts
 - Longitudinal population based cohort*

A longitudinal, population-based, cohort study of childhood asthma (onset-26 yr)*

Multivariate Model	Pers	sistence	Relapse		
(Significant Risk Factors)	O.R.	P Value	O.R.	P Value	
$PC20 \le 8mg/ml \text{ or } BDR > 10\%$ at any assessment (9-12 yr)	3.00	<0.001	3.03	<0.001	
Positive mite Skin Test at 13yr	2.41	0.001	2.18	0.01	
Female sex	1.71	0.03			
Smoking at 21yr	1.84	0.01			
Age of onset of wheezing			0.89	<0.001	

*Odds Ratios for factors predicting persistence or relapses of wheezing

Sears et al., NEJM, 2003: 329:1414-22

12th Annual Meeting & Indoor Air Expo Omni Fort Worth & Fort Worth Convention Center

Development of Allergic Asthma

Susceptible Individuals (Family History)

What are Allergens?

- Small proteins or glycoproteins
- 10 to 50,000 kDA molecular size
- Readily soluble → penetrate membranes
- Have different biologic functions
- Cause allergic immune responses (IgE antibody)

Naming of Allergens

Examples:

- 1st allergen of cat (*Felis domesticus*): Fel d 1
- 2nd allergen of dust mite *Dermatophagoides pteronyssinus*): Der p 2

International Union of Immunological Societies' (IUIS) Allergen Nomenclature Subcommittee (www.allergen.org)

12th Annual Meeting & Indoor Air Expo Omni Fort Worth & Fort Worth Convention Center Omni Fort Worth & Fort Worth Convention Center

Fel d 1

The IAQ Industry's Largest Annual Convention Mite Feces is Loaded with Allergens and Adjuvants

- Allergens
- Proteases
- Endotoxin
- Bacterial DNA
- Mite DNA
- Chitin
- Evolutionary distance

Platts-Mills JACI 119:297-302, 2007, Reese et al, Nature 447: 92-6, 2007

12th Annual Meeting & Indoor Air Expo Omni Fort Worth & Fort Worth Convention Center Omni Fort Worth & Fort Worth Convention Center

Dust Mites Associated with Asthma

Domestic

- ✓ Dermatophagoides spp.
- ✓ Euroglyphus maynei
- ✓ Blomia tropicalis

Occupational:

- ✓ Lepidoglyphus destructor
- ✓ Tyrophagus putrescentiae
- ✓ Acarus siro

<u>Distribution</u> "Worldwide" (low altitude) "Worldwide"

Tropics

Farms, farming communities, "Barn Allergy" Europe & USA

✓ Tetranychus urticae✓ Panonychrus ulmi

Orchards, greenhouses: Spain, Germany, Korea*

Vorth & Fort Worth Convention Center

*Burches et al, Clin Exp Allergy 26:1262 1996; Kim et al, JACI 107:244, 2001 12th Annual Meeting & Indoor Air Expo February 24-26, 2009 • Fort Worth, TX

Risk Factors for Asthma in US Inner Cities

- Race (African American, Hispanic)
- Lower socioeconomic status
- Sensitization and exposure to allergens, especially cockroach

12th Annual Meeting & Indoor Air Expo Omni Fort Worth & Fort Worth & Fort Worth & Fort Worth & Fort Worth Convention Center

NIH - Inner-City Asthma Study

Inner City Asthma Study

- 937 children (aged 5-11) from Seattle, Dallas, Tucson, Boston, St. Louis, New York, Bronx
 - Skin Tests
 - Allergen Exposures
- Sensitization
 - Cockroach: Bronx, New York, Dallas (~80%)
 - Mite: Dallas, Seattle (~80%)
- Exposure
 - Cockroach: >2U/g Bla g 1, New York, Bronx, Chicago
 - Mite: >2µg/g, Dallas, Seattle

Indoor Air Quality Gruchalla et al, JACI 115:478, 2005 **12th Annual Meeting & Indoor Air Expo** February 24-26, 2009 • Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

Dose Response Relationship between Sensitization and Exposure to Cockroach

Eggleston et al, JACI 1998; 102: 563-70 **12th Annual Meeting & Indoor Air Expo** February 24-26, 2009 • Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

Animal allergen exposure (cat & dog)

• Is ubiquitous

- occurs in homes without pets $(1-10\mu g/g)$
- occurs in schools, daycare centers, offices and other public places
- is passively transferred on clothing
- In schools:
 - airborne cat allergen increased 5-fold in classes with cat owners
 - indirect cat exposure increases the risk of asthma exacerbation (9-fold)

Almqvist et al., AJRCCM 2001; 163:694-8

12th Annual Meeting & Indoor Air Expo Omni Fort Worth & Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

Mouse allergen: Associated with inner-city asthma

- Prevalence of sensitization: 11-27% in inner-city children with asthma (in 8 US cities)
- Mouse allergen (Mus m 1) found in >75% of low income homes - median 1.6µg/g.
- Risks of sensitization associated with Mus m 1 exposure

Phipatanakul et al., JACI 2000:106:1070-80

12th Annual Meeting & Indoor Air Expo

February 24-26, 2009 • Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

National Allergen Survey of Allergen Exposure in US Homes

- 831 housing units surveyed in 75 locations across the US
- Estimated that 23% (~ 22 million) of U.S. housing units contain high levels (>10µg/g) of Group 1 mite allergen
- Cat and dog allergens present in all homes
- Levels of mouse allergen associated with sensitization (>1.6µg/g) found in 22% of homes

Studies conducted by National Institute of Environmental Health Sciences and Dept. Housing and Urban Development

Arbes et al, J Allergy Clin Immunol 114;111-7, 2004

12th Annual Meeting & Indoor Air Expo Omni Fort Worth & Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

Allergen Exposure Guidelines for Developing Allergic Sensitization

		Allergen level	
		in dust	
Mite:	Der p 1, Der f 1	2-10 µg/g	
Cat:	Fel d 1	1-10 µg/g	
Dog:	Can f 1	1-10 µg/g	
Cockroach:	Bla g 1	1-8 U/g	
	Blag2	>1µg/g	
Mouse:	Mus m 1	1-2 μg/g	

12th Annual Meeting & Indoor Air Expo Omni Fort Worth & Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

The IAQ Industry's Largest Annual Convention Monthly Der f 1 levels in houses and apartments in Boston, MA

ndoor

The IAQ Industry's Largest Annual Convention Effect of Relative Humidity on Mite Allergen Levels in Homes

Arlian et al., J Allergy Clin Immunol 2001; 107:99-104

Damp Indoor Spaces

INSTITUTE OF MEDICINE

Challenges Associated with Mold:

- assessments of sensitization and exposure
- diverse health effects
- establishing a relationship between mold exposure and disease

12th Annual Meeting & Indoor Air Expo Dimit Fort Worth & Fort Worth Convention Center Dimit Fort Worth & Fort Worth Convention Center

Molds Associated with Asthma

Aspergillus

CladosporiumPenicillium12th Annual Meeting & Indoor Air ExpoE. Grant Smith 1990

Airborne fungi in homes of children with asthma in U.S. Inner Cities

- Cultured indoor and outdoor fungi in
 - 7 urban communities
 - 414 homes of children with asthma
- Most prevalent species: Alternaria, Aspergillus, Cladosporium, Penicillium
- Risk factors for mold:
 - Dampness
 - Cockroach infestations
 - Cats

Indoor Air Quality O'Connor et al, JACI 114:599, 2004 12th Annual Meeting & Indoor Air Expo Fet

February 24-26, 2009 • Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

Quality ASSOCIATION INC.

Alternaria antigens in dust from US homes: Data from the NSLAH

12th Annual Meeting & Indoor Air Expo Description Convertion Converting Convertion Converting Converting Conv

Indoor

ASSOCIATION

Cross-reactivity of ELISA for Alternaria alternata using polyclonal antibodies

Monoclonal ELISA for Alternaria Allergen, Alt a 1

Indoo

Health Effects of Indoor Molds

- Stachybotrys associated with idiopathic pulmonary hemorrhage in infants (AIPH) in Cleveland ("toxic mold").
- CDC associates Cleveland cases with von Willebrand disease (vWD)
 - an inherited bleeding disorder, (MMWR 2004).
- Position Statements: ACOEM 2002, AAAAI, 2006
- Guide for interpreting reports from inspections or investigations of indoor mold. Horner et al, JACI 121: 592, 2008
- "A new plague mold litigation: How junk science and hysteria built an industry" Cliff Hutchinson and Robert Powell US Chamber Institute for Legal Reform Center for Legal Policy at the Manhattan Institute, 2003

Quality 12th Annual Meeting & Indoor Air Expo February 24-26, 2009 • Fort Worth, TX Dissociation Distance Sector Worth & Fort Worth & Fort Worth Convention Center

Specificity of ELISA for Sch34

Specificity of Monoclonal anti-S. chartarum Antibodies (SchX)

Mold Species

boc		Stachybotrys chartarum	Aspergillus versicolor	Aspergillus fumigatus	Penicillium chrysogenum	Penicillium expansum	Trichoderma harzianum	Chaetomium globosum
N ti	3F10	1.79	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
al A	3E11	1.77	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
on	2C9	2.20	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
oc	10F2	1.90	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
lon	9F6	1.73	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
2								

Values are OD (405 nm) in ELISA (assay background <0.09)

>

12th Annual Meeting & Indoor Air Expo Omni Fort Worth & Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

ELISA Assays for *S. chartarum* antigens

	Sch34	SchX
<u>Source</u>	<u>Conc. (ng/mL)</u>	<u> Conc. (U/mL)</u>
S.chartarum, EMPAT Challenge	73.1	3.0
S.chartarum, 32-47-19	6.2	85.4
S.chartarum, 32-43-05	6.3	36.1
S.chartarum, 32-43-03	5.3	64.1
S.chartarum, 29-63-12	9.7	70.9
S.chartarum, 29-58-26	7.2	11.5
S.chartarum, 44	0.4	3.8
S.chartarum, Antigen Labs	- 58.1	<1.0
S.chartarum, Ceiling tile	0.3	<1.0

Sch34: Xu et al, J Immunol Methods 332:121-8, 2008;

SchX: Smith et al, JACI 123: S172, 2009

Indoo

ASSOCIATION

12th Annual Meeting & Indoor Air Expo Duri Fort Worth & Fort Worth Convention Center Pebruary 24-26, 2009 • Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

The IAQ Industry's Largest Annual Convention Correlation between Sch34 antigen and spore levels in house dust samples

Medical Effects of Mold Exposure

- Molds cause adverse health effects through
 - Allergic hypersensitivity responses
 - Infections
 - Toxicity (ingested mycotoxins)
- Little evidence for health effects of
 - Inhaled mycotoxins
 - Mycotoxin mediated immune dysfunction
- IgE ab measurements to mold allergens are for recommended diagnosis
- Limited role for environmental assessments

Position Statement: American Academy of Allergy, Asthma and Immunology, 2006

Indoor Air Quality

Key Points: Control of Environmental Factors that Affect Asthma

- Exposure of patients who have asthma to allergens increases asthma symptoms and precipitates asthma exacerbations.
- Patients who have asthma should:
 - Reduce exposure to allergens to which they are sensitized and exposed.
 - Know that effective allergen avoidance requires a multifaceted, comprehensive approach
 - Consider allergen immunotherapy treatment

Guidelines for the Diagnosis and Management of Asthma (EPR-3): US National Heart, Lung and Blood Institute: 2007

Supported by the following grants:

SBIR ES011920 & ES55545: From the U.S. National Institute for Environmental Health Sciences

European Union **CREATE** Consortium (G6RD-CT-2001-00582)

12th Annual Meeting & Indoor Air Expo

February 24-26, 2009 • Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

12th Annual Meeting & Indoor Air Expo

February 24-26, 2009 • Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

Indoor Allergens:

Exposure Assessment and Intervention

Eva M. King, PhD Senior Scientist INDOOR Biotechnologies Inc., Charlottesville VA

Key Points: Control of Environmental Factors that Affect Asthma

- Exposure of patients who have asthma to allergens increases asthma symptoms and precipitates asthma exacerbations.
 - Patients who have asthma should:
 - Reduce exposure to allergens to which they are sensitized and exposed.
 - Know that effective allergen avoidance requires a multi-faceted, comprehensive approach
 - Consider allergen immunotherapy treatment

Excerpted from:

US National Heart, Lung and Blood Institute:

Guidelines for the Diagnosis and Management of Asthma (EPR-3), 2007

Assessment of Allergen Exposure in Home, Workplace, Schools, Public Buildings

- Collect "reservoir" dust samples from bedding, carpets, furnishings
- Collect air samples for animal allergens
- Send to lab for analysis (provides most accurate exposure measurement)
- Test on site using rapid "dipstick" tests
 - "yes/no" answer

* 3rd Int'l Report on Indoor Allergens and Asthma JACI 1997; AAAAI Position Statement Feb, 1999; NHLBI Expert Panel Report 1997; JACI Suppl Mar, 2001; 12th Annual Meeting & Indoor Air Expo February 24-26, 2009 • Fort Worth, TX

Standardized Dust Collection Device

- Dust samples collected over defined area (0.25m²) in 2 mins
- Disposable 40µm filters, easily collect indoor allergens, molds and endotoxin
- High correlation between subject- and techniciancollected samples.
- In progress for IESO Standard

DUSTREAM[™] dust collector

Tsay et al, Clin Exp Allergy 2002; Sercombe et al, Allergy 2005; Arbes et al Env Hith Perspect, 2005

Improving health care delivery using a consumer test for mite allergen*

* Detects mite Group 2 in 10 minutes

DUSTREAM[™] collector

Tsay et al, Clin Exp Allergy 2002; 32:1596-1601

The IAQ Industry's Largest Annual Convention Quantitative Exposure Assessment ELISA • Enzyme-Linked ImmunoSorbent Assay

Multiplex ARray for Indoor Allergens (MARIA)

- Multiple allergens = One single test
- Quantitative data, improved standardization and efficiency
- Versatility new assays can be added and custom combinations developed
- Suitable for allergens and molds

Indoor Air Quality ASSOCIATION

12th Annual Meeting & Indoor Air Expo Omni Fort Worth & Fort Worth Convention Center

How does MARIA work?

- 5.6µm polystyrene beads with internal fluorescent dyes (up to 100 colors)
- Beads coupled to capture mAb, incubate with allergen samples
- Detect allergen using biotinylated mAb and streptavidin-conjugated fluorophore

12th Annual Meeting & Indoor Air Expo

February 24-26, 2009 • Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

- Beads are drawn into the optical path of flow cytometer
- Red laser identifies internal bead color, i.e. beads bearing a specific allergen
- Green laser measures external signal intensity: quantifies the amount of allergen bound

12th Annual Meeting & Indoor Air Expo February 24 Omni Fort Worth &

- 100 beads of each type are counted and mapped according to the analyte.
- The fluorescent signal is quantified to determine the allergen concentration

Quantitative Data

xMAP[®] Instrument (Bio-Plex)

12th Annual Meeting & Indoor Air Expo February

February 24-26, 2009 • Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

Universal Allergen Standard

Current ELISA standards are extracts

New Universal Allergen Standard:

- Modeled on EU CREATE Project
- Contains 8 purified natural allergens
- Protein concentrations determined by amino-acid analysis
- Can be used in ELISA and MARIA

Universal Allergen Standard	Concentration (ng/ml)		
Der p 1	2500		
Der f 1	2500		
Der p 2	1000		
Fel d 1	1000		
Can f 1	2500		
Mus m 1	250		
Rat n 1	1000		
Bla g 2	2500		

The IAQ Industry's Largest Annual Convention MARIA versus ELISA

Earle et al, JACI 2007; 119:428-33

Air

R² = 0.90 - 0.99, p<0.001

The IAQ Industry's Largest Annual Convention Assay Performance:

Indoor

Lower Limit of Detection (LLOD)

Allergen	ELISA	MARIA	
	(ng/ml)	(ng/ml)	
Der p 1	2	0.06	
Der f 1	2	0.06	
Mite Group 2	0.8	0.02	
Fel d 1	0.8	0.02	
Can f 1	2	0.06	
Mus m 1	0.2	0.01	
Rat n 1	0.8	0.02	
Bla g 2	2	0.98	
Alt a 1	0.8	0.02	

MARIA is up to 40-fold more sensitive than ELISA

Assay Performance

Example: 200 dust extracts for 8 allergens

	ELISA	MARIA			
Samples per plate	18	23			
Total number of plate	s 12 plates x 8 allergens = 96 plates	9 plates		9 plates	
Technician time	echnician time 16 days 3 da				
In ELISA, each additional allergen adds 2 work days.					
In MARIA, all allergens are measured simultaneously.					
Air Quality ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION					

Multi-Center Ring Trial of MARIA

NIH-funded third-party validation:

Study of Inter-/Intra-laboratory variability

- 151 samples
- tested for 8 allergens
 Der p 1, Der f 1, Mite Group 2, Fel d 1, Can f 1, Mus m 1, Rat n 1, Bla g 2
- by 10 laboratories
- on 3 separate occasions
 more than 36,000 data points

Participating Centers

<u>US</u>

- Dr. Darryl Zeldin
- Dr. Detlef Schmechel
- Dr. Thomas Platts-Mills
- Dr. Robert Hamilton
- Dr. Donald Milton
- Dr. Peter Thorne
- Dr. Eva M. King

<u>Europe</u>

- Dr. Ronald van Ree
- Dr. B. Brunekreef / E. Krop
- Dr. F. Ferreira / Dr. A. Hartl

Data Analysis:

Dr. S. Arbes/Dr. A. Calatroni/Dr. H. Mitchell

NIEHS, Research Triangle Park, NC NIOSH, Morgantown, WV UVA, Charlottesville, VA DACI Laboratory, JHU, Baltimore MD University of Massachusetts, Lowell Dept Occ & Environ. Health, University of Iowa

IBI, Charlottesville VA (coordinating laboratory)

Academic Medical Center, Amsterdam IRAS Div Occ & Env Health, Utrecht Dept Molecular Biology, Univ. Salzburg/

Rho Inc., Chapel Hill, NC

ASSOCIATION INC.

Intra-Laboratory Variability

12th Annual Meeting & Indoor Air Expo Meeting & Indoor Air Expo Pebruary 24-26, 2009 • Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center

Inter-Laboratory Variability

0

° 2

3 °

A. Calatroni, S. Arbes, H. Mitchell

Quality ASSOCIAL TION ASSOCIAL

Mean Correlation Coefficients

- Intra-lab variability (r):
 - Indoor: 0.98 **
 - Iowa: 0.97 **
 - AMC: 0.96 **
- Inter-lab variability (r):
 - AMC/Indoor: 0.95 **
 - AMC/lowa: 0.96 **
 - Indoor/Iowa: 0.95 **

** = p<0.001

MCT Results Summary

 MARIA produces results that are reproducible within and between laboratories (r = >0.95)

 MARIA will improve standardization of allergen exposure assessment

External Quality Control

	Inbio Results		Spike Conc.		% Recovery		
Sample Type	Mus m 1 (ng/ml)	Rat n 1 (ng/ml)	Mus m 1 (ng/ml)	Rat n 1 (ng/ml)	Mus m 1 (ng/ml)	Rat n 1 (ng/ml)	
QC Spike	4.38	19.26	5.06	22.00	86.6	87.5	
QC Spike	4.31	18.17	5.06	22.00	85.2	82.6	
QC Spike	3.48	14.75	5.06	22.00	68.8	67.0	
QC Spike	0.05	0.20	0.05	0.22	100.0	90.9	
QC Spike	0.04	0.19	0.05	0.22	75.5	86.4	
QC Spike	4.40	21.92	5.06	22.00	87.0	99.6	
QC Spike	4.70	20.43	5.06	22.00	92.9	92.9	
QC Spike	4.24	19.53	5.06	22.00	83.8	88.8	
QC Spike	1.09	4.81	1.01	4.40	107.9	109.3	
QC Spike	0.83	3.72	1.01	4.40	82.2	84.5	
QC Spike	1.01	4.93	1.01	4.40	100.0	112.0	
QC Spike	0.05	0.21	0.05	0.22	100.0	95.5	
QC Spike	0.05	0.24	0.05	0.22	100.0	109.1	
Low Level Std	0.05	0.22	0.05	0.22	100.0	100.0	
QC Blank	<0.01	<0.02					
QC Blank	<0.01	<0.02	Mean Spike	Recovery	90.7	93.3	

Indoor Air Quality ASSOCIATION INC.

12th Annual Meeting & Indoor Air Expo Description Convertion Converting Convertion Converting Converting Conv

Allergen exposure assessment and indoor air quality

- Allergen exposure should be considered as part of IAQ investigations of allergic patients
- ELISA or MARIA[™] technology provide quantitative data on exposure levels
- Rapid tests can be used for on-site screening by IAQ personnel
- MARIATM technology is ideally suited for:
 - Research use (epidemiology, birth cohorts)
 - Monitoring allergen avoidance studies
 - Routine commercial analyses
 - Comprehensive indoor air quality assessments

Allergen Avoidance

12th Annual Meeting & Indoor Air Expo

Davos, Switzerland

Indoo

ASSOCIATION

Time Magazine, August 2004

Housing Interventions and Health: A Review of the Evidence

January 2009 National Center for Healthy Housing

Effective Interventions

Multi-faceted in-home interventions, tailored to the individual, are effective in controlling asthma symptoms and morbidity:

- Home environmental assessment
- Education
- Mattress and pillow covers
- HEPA vacuums and HEPA filters
- No smoking

ndoo

- Cockroach and rodent management
- Eliminate moisture intrusion
- Intensive household cleaning

Promising interventions

Further field evaluation needed:

- Moisture control through dehumidification
- Improved general/local exhaust ventilation
- Use of air cleaning devices
- Repeated dry-steam cleaning
- Repeated vacuuming

Basic research required:

- Carpet treatments/acaricides
- One-time professional cleaning

Ineffective Interventions

Each intervention in isolation from other interventions is not effective!

"Air cleaners" that produce high levels of ozone should not be used due to ozone exposure problems.

Proper management of allergic disease should include:

- Assessment of allergen exposure in the home
- Clinical assessment of allergic disease
- Targeted environmental control procedures

Exposure assessment:

- Collection of reservoir dust or air samples in the home
- Measurement of major allergens (ELISA or MARIA)

12th Annual Meeting & Indoor Air Expo Moni Fort Worth & Fort Worth Convention Center Convention Center

Conclusions

- Exposure to indoor allergens is an important risk factor for allergic disease
- Allergen avoidance is effective for improving health
- Environmental intervention requires a multifaceted approach

The IAQ Industry's Largest Annual Convention

12th Annual Meeting & Indoor Air Expo

February 24-26, 2009 • Fort Worth, TX Omni Fort Worth & Fort Worth Convention Center